Author: Obier, F.
Paper Title Page
THPOPT043 Injection Design Options for the Low-Emittance PETRA IV Storage Ring 2689
 
  • M.A. Jebramcik, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, D. Einfeld, T. Hellert, J. Keil, G. Loisch, F. Obier
    DESY, Hamburg, Germany
 
  The proposed PETRA IV electron storage ring that will replace DESY’s flagship synchrotron light source PETRA III will feature a horizontal emittance as low as 20 pm based on a hybrid six-bend achromat lattice. Such a lattice design leads to the difficulty of injecting the incoming beam into an acceptance that is as small as 2.6 um. In contrast to earlier lattice iterations based on a seven-bend achromat lattice, the latest version allows accumulation, i.e., the off-axis injection of the incoming beam. In this contribution, the effects of deploying different septum types, namely a pulsed or a Lambertson septum, on the injection process as well as the injection efficiency are presented. This analysis includes the effects of common manipulations to the injected beam, e.g., beam rotation and aperture sharing, on the injection efficiency. Furthermore, the option of a nonlinear kicker and its optimization (wire positions, wire current, optics functions) are presented since a nonlinear kicker could provide an alternative to the rather large number of strip-line kickers that are necessary to generate the orbit bump at the septum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT043  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK040 Few-Nanosecond Stripline Kickers for Top-Up Injection into PETRA IV 2858
 
  • G. Loisch, V. Belokurov, F. Obier
    DESY, Hamburg, Germany
 
  PETRA IV is the planned ultralow-emittance upgrade of the PETRA III synchrotron light source at DESY, Hamburg. The current baseline injection scheme is an off-axis, top-up injection with few-nanosecond stripline kickers, which would allow for accumulation and least disturbance of experiments during injection. Besides the requirements on kick-strength, field quality, pulse rise-rate, and heat management, two mechanical designs with different apertures are necessary, as the devices will be used for injection and the transverse multi-bunch feedback system. In this contribution we will present the current status of 3D finite element simulations of electromagnetic fields and heating as well as the mechanical design and first pulse electronics tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK040  
About • Received ※ 20 May 2022 — Revised ※ 17 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK041 Development of Programmable Bipolar Multi kHz Kicker Drivers for Long Pulse Superconducting Electron Linacs 2862
 
  • J.L. Teichgräber, W. Decking, J. Kahl, F. Obier
    DESY, Hamburg, Germany
 
  Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany Superconducting cavities allow for long rf-pulses, which enable the acceleration of thousands of electron bunches within one rf-pulse. Due to transient effects, e.g. coupler kicks, eddy currents or wakefields, bunch properties like the beam trajectory can change along the pulse train. To compensate for this, kicker systems based on high-current operational amplifiers have been developed for the free electron lasers European XFEL and FLASH at DESY in Hamburg. Here, we present the layout of the kicker system, the setup of the pulse electronics, and operational results with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK041  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS008 Physics Design of Electron Flash Radiation Therapy Bemaline at PITZ 2954
 
  • X.-K. Li, Z. Aboulbanine, Z. Amirkhanyan, M. Groß, M. Krasilnikov, A. Lueangaramwong, R. Niemczyk, A. Oppelt, S. Philipp, H.J. Qian, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • G. Loisch, F. Obier, M. Schmitz
    DESY, Hamburg, Germany
 
  The Photo Injector Test facility at DESY in Zeuthen (PITZ) is preparing an R&D platform for electron FLASH radiotherapy, very high energy electron (VHEE) radiotherapy and radiation biology based on its unique beam parameters: ps scale bunches with up to 5 nC bunch charge at MHz bunch repetition rate in bunch trains of up to 1 ms in length repeating at 10 Hz. This platform is called FLASHlab@PITZ. The PITZ beam is routinely accelerated to 22 MeV, with a possible upgrade to 250 MeV for VHEE radiotherapy in the future. The 22 MeV beam will be used for dosimetry experiments and studying biological effects in thin samples in the next years. A new beamline to extract and match the beam to the experimental station is under physics design. The main features include: an achromatic dogleg to extract the beam from the PITZ beamline; a sweeper to scan the beam across the sample within 1 ms for tumor painting studies; and an imaging system to keep the beam size small at the sample after scattering in the exit window while maintaining the scan range of the sweeper. In this paper, the beam dynamics with bunch charges from 10 pC to 5 nC in and the preparation of the new beamline will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS008  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)