Author: Nasse, M.J.
Paper Title Page
MOPOPT017 Terahertz Sampling Rates with Photonic Time-Stretch for Electron Beam Diagnostics 263
 
  • O. Manzhura, E. Bründermann, M. Caselle, S.A. Chilingaryan, T. Dritschler, S. Funkner, A. Kopmann, A.-S. Müller, M.J. Nasse, G. Niehues, M.M. Patil, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • S. Bielawski, E. Roussel, C. Szwaj
    PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
  • S. Bielawski, E. Roussel, C. Szwaj
    PhLAM/CERLA, Villeneuve d’Ascq, France
 
  Funding: Supported by the Helmholtz Program-Oriented Funding (PoF), research program Matter and Technologies (Detector Technology and System), ANR-DFG ULTRASYNC funding program, CEMPI LABEX and Wavetech CPER.
To understand the underlying complex beam diagnostic often large numbers of single-shot measurements must be acquired continuously over a long time with extremely high temporal resolution. Photonic time-stretch is a measurement method that is able to overcome speed limitations of con- ventional digitizers and enable continuous ultra-fast single- shot terahertz spectroscopy with refresh rates of trillions of consecutive frames. In this contribution, a novel ultra- fast data sampling system based on photonic time-stretch is presented and the performance is discussed. THERESA (TeraHErtz REadout SAmpling) is a data acquisition system based on the recent ZYNQ-RFSoC family. THERESA has been developed with an analog bandwidth up to 20 GHz and a sampling rate up to 90 GS/s. When combined with the photonic time-stretch setup, the system will be able to sample a THz signal with an unprecedented frame rate of 8 TS/s. Continuous acquisition for long observation times will open up new possibilities in the detection of rare events in accelerator physics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT017  
About • Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT024 Measuring the Coherent Synchrotron Radiation Far Field with Electro-Optical Techniques 292
 
  • C. Widmann, M. Brosi, E. Bründermann, S. Funkner, A.-S. Müller, M.J. Nasse, G. Niehues, M.-D. Noll, M.M. Patil, M. Reißig, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • M. Brosi
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Funding: M. M. P. acknowledges the support by the DFG-funded Doctoral School KSETA. C. W. achnowledges funding by BMBF contract number 05K19VKD.
For measuring the temporal profile of the coherent synchrotron radiation (CSR) a setup based on electro-optical spectral decoding (EOSD) will be installed as part of the sensor network at the KIT storage ring KARA (Karlsruhe Research Accelerator). The EOSD technique allows a single-shot, phase sensitive measurement of the complete spectrum of the CSR far field radiation at each turn. Therefore, the dynamics of the bunch evolution, e.g. the microbunching, can be observed in detail. Especially, in synchronized combination with the already established near-field EOSD, this method could provide deeper insights in the interplay of bunch profile and CSR generation for each individual electron bunch. For a successful implementation of the EOSD single shot setup, measurements with electro-optical sampling (EOS) are performed. With EOS the THz pulse shape is scanned over several turns by shifting the delay of laser and THz pulse. In this contribution different steps towards the installation of the EOSD far field setup are summarized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT024  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT068 Transverse and Longitudinal Modulation of Photoinjection Pulses at FLUTE 1174
 
  • M. Nabinger, A.-S. Müller, M.J. Nasse, C. Sax, J. Schäfer, C. Widmann, C. Xu
    KIT, Karlsruhe, Germany
 
  Funding: Supported by the Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology" (KSETA).
To generate the electrons to be accelerated, a photoinjection laser is used at the linac-based test facility FLUTE (Ferninfrarot Linac- Und Test Experiment) at the Karlsruhe Institute of Technology (KIT). The properties of the laser pulse, such as intensity, laser spot size or temporal profile, are the first parameters to influence the characteristics of the electron bunches. In order to control the initial parameters of the electrons in the most flexible way possible, the laser optics at FLUTE are therefore supplemented by additional setups that allow transverse and longitudinal laser pulse shaping by using so-called Spatial Light Modulators (SLMs). In the future, the control of the SLMs will be integrated into a Machine Learning (ML) supported feedback system for the optimization of the electron bunch properties. In this contribution the first test experiments and results on laser pulse shaping at FLUTE on the way to this project are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT068  
About • Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 22 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS006 Simulation of the Effect of Corrugated Structures on the Longitudinal Beam Dynamics at KARA 2241
 
  • S. Maier, M. Brosi, A. Mochihashi, A.-S. Müller, M.J. Nasse, P. Schreiber, M. Schwarz
    KIT, Karlsruhe, Germany
 
  Funding: Supported by the DFG project 431704792 in the ANR-DFG collaboration project ULTRASYNC. S. M. acknowledge the support by the Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology" (KSETA).
Two parallel corrugated plates will be installed at the KIT storage ring KARA (KArlsruhe Research Accelerator). This impedance manipulation structure will be used to study and eventually control the beam dynamics and the emitted coherent synchrotron radiation (CSR). In this contribution, we present the results obtained with the Vlasov-Fokker-Planck solver Inovesa showing the impedance impact of different corrugated structures on the bunch and its emitted CSR power.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS006  
About • Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS022 Detailed Analysis of Transverse Emittance of the FLUTE Electron Bunch 2289
 
  • T. Schmelzer, E. Bründermann, A.-S. Müller, M.J. Nasse, R. Ruprecht, J. Schäfer, M. Schuh, N.J. Smale, P. Wesolowski
    KIT, Karlsruhe, Germany
 
  The compact and versatile linear accelerator-based test facility FLUTE (Ferninfrarot Linac- Und Test-Experiment) is operated at KIT. Its primary goal is to serve as a platform for a variety of accelerator R\&D studies like the generation of strong ultra-short terahertz pulses. The amplitude of the generated coherent THz pulses is proportional to the square number of particles in the bunch. With the transverse emittance a measure for the transverse particle density can be determined. It is therefore a vital parameter in the optimization for operation. In a systematic study, the transverse emittance of the electron beam was measured in the FLUTE injector. A detailed analysis considers different influences such as the bunch charge and compares this with particle tracking simulations carried out with ASTRA. In this contribution, the key findings of this analysis are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS022  
About • Received ※ 08 June 2022 — Revised ※ 23 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)