Author: Nanthanasit, P.
Paper Title Page
TUPOPT029 Infrared Free-Electron Laser Project in Thailand 1070
 
  • S. Rimjaem, N. Chaisueb, P. Kitisri, K. Kongmali, E. Kongmon, P. Nanthanasit, S. Pakluea, J. Saisut, S. Sukara, K. Techakaew, C. Thongbai
    Chiang Mai University, Chiang Mai, Thailand
  • P. Apiwattanakul, P. Jaikaew, W. Jaikla, N. Kangrang
    Chiang Mai University, PBP Research Facility, Chiang Mai, Thailand
  • M. Jitvisate
    Suranaree University of Technology, Nakhon Ratchasima, Thailand
  • M.W. Rhodes
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
 
  The infrared free-electron laser (IR FEL) project is established at Chiang Mai University in Thailand with the aim to provide experimental stations for users utilizing accelerator-based terahertz (THz) and mid-infrared (MIR) radiation. Main components of the system include a thermionic RF gun, an alpha magnet as a bunch compressor and energy filter, a standing-wave RF linac, a THz transition radiation (THz-TR) station, two magnetic bunch compressors and beamlines for MIR/THz FEL. The system commissioning is ongoing to produce the beams with proper properties. Simulation results suggest that the oscillator MIR-FEL with wavelengths of 9.5-16.6 um and pulse energies of 0.15-0.4 uJ can be produced from 60-pC electron bunches with energy of 20-25 MeV. The super-radiant THz-FEL with frequencies of 1-3 THz and 700 kW peak power can be produced from 10-16 MeV electron bunches with a charge of 50 pC and a length of 200-300 fs. Furthermore, the THz-TR with a spectral range of 0.3-2.5 THz and a pulse power of up to 1.5 MW can be obtained. The MIR/THz FEL will be used as high-brightness light source for pump-probe experiments, while the coherent THz-TR will be used in time-domain spectroscopy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT029  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS039 Investigation on Intermolecular Interactions in Ionic Liquids Using Accelerator-based THz Transition Radiation 3053
 
  • P. Nanthanasit, S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
  • N. Chattrapiban, P. Nimmanpipug, S. Rimjaem
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
  • M. Jitvisate
    Suranaree University of Technology, Nakhon Ratchasima, Thailand
 
  Ionic liquids (ILs) are interesting material that can be used in many applications. Spectroscopic measurement using accelerator-based terahertz transition radiation (THz TR) is one of potential techniques to investigate their intermolecular interactions by observing the vibra-tional bands in the terahertz region due to TR’s excep-tional properties: coherent, broadband, and high intensi-ty. This work aims to study intermolecular interactions of ILs using the THz TR produced from an electron beam at the PBP-CMU Electron Linac Laboratory. The THz TR with the frequency range of 0.3-2.5 THz can be produced from electron beam of energy 10-25 MeV. This radiation is produced and transported to the experimental area, where it is used as the coherent and polarization selective light source for the Fourier transform infrared (FTIR) spectrometer. The absorption spectrum in the THz region of the ILs is then measured. In addition, to explain the experimental results deeply, theoretical calculations using the density functional theory are performed. In this contribution, we present the results from experiment and computational calculation that can be used together to describe the intermolecular interactions in ILs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS039  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)