Author: Namora, V.
Paper Title Page
THPOST039 SPS Beam Dump System (SBDS) Commissioning After Relocation and Upgrade 2530
 
  • P. Van Trappen, E. Carlier, L. Ducimetière, V. Namora, V. Senaj, F.M. Velotti, N. Voumard
    CERN, Meyrin, Switzerland
 
  In order to overcome several machine limitations, the SBDS has been relocated from LSS1 (Long Straight Section 1) to LSS5 during LS2 (Long Shutdown 2) with an important upgrade of the extraction kicker installation. An additional vertical deflection kicker magnet (MKDV) was produced and installed while the high voltage (HV) pulse generators have been upgraded by changing gas-discharge switches (thyratrons and ignitrons) to semiconductor stacks operating in oil. Furthermore the horizontal sweep generators have been upgraded to allow for a lower kick strengths. The controls, previously consolidated during LS1, went through an additional light consolidation phase with among others the upgrade of the trigger & retrigger distribution system and the installation of a new fast-interlocks detection system. This paper describes the commissioning without and with beam and elaborates on the measured improvements and encountered problems with corrective mitigations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST039  
About • Received ※ 07 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK043 Mitigation of High Voltage Breakdown of the Beam Screen of a CERN SPS Injection Kicker Magnet 2868
 
  • M.J. Barnes, W. Bartmann, M. Díaz Zumel, L. Ducimetière, L.M.C. Feliciano, T. Kramer, V. Namora, T. Stadlbauer, D. Standen, P. Trubacova, F.M. Velotti, C. Zannini
    CERN, Meyrin, Switzerland
 
  The SPS injection kicker magnets (MKP) were developed in the 1970’s, before beam induced power deposition was considered an issue. These magnets are very lossy from a beam impedance perspective: this is expected to be an issue during SPS operation with the higher intensity beams needed for HL-LHC. A design, with serigraphy applied to an alumina carrier, has been developed to significantly reduce the broadband beam coupling impedance and hence mitigate the heating issues. During high voltage pulse testing there were electrical discharges associated with the serigraphy. Detailed mathematical models have been developed to aid in understanding the transiently induced voltages and to reduce the magnitude and duration of electric field. In this paper, we discuss the solutions implemented to mitigate the electrical discharges while maintaining an adequately low beam-coupling impedance. In addition, the results of high voltage tests are reported. The alumina substrate has a high secondary electron yield and thus electron-cloud could be an issue, with SPS beam, if mitigating measures were not taken: this paper also discusses the measures implemented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK043  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)