Author: Marr, G.J.
Paper Title Page
WEOYGD2
Results of the Coherent Electron Cooling Experiment at RHIC  
 
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • Z. Altinbas, S.J. Brooks, J.C. Brutus, Z.A. Conway, L. Cultrera, A.J. Curcio, L. DeSanto, A. Di Lieto, K.A. Drees, W. Fischer, M. Gaowei, X. Gu, M. Harvey, T. Hayes, H. Huang, M. Ilardo, P. Inacker, J.P. Jamilkowski, Y.C. Jing, P.K. Kankiya, R. Karl, D. Kayran, J. Kewisch, J. Ma, G.J. Mahler, G.J. Marr, A. Marusic, R.J. Michnoff, M.G. Minty, G. Narayan, L.K. Nguyen, M.C. Paniccia, I. Pinayev, T. Rao, G. Robert-Demolaize, T. Roser, P. Sampson, J. Sandberg, M.P. Sangroula, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, J. Skaritka, L. Smart, A. Sukhanov, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, G. Wang, D. Weiss, B.P. Xiao, A. Zaltsman
    BNL, Upton, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Coherent electron Cooling (CeC) experiment aims on demonstrating cooling during this RHIC run, which will be concluded in April 2022. In this talk we will present results of the CeC experiment with special focus won the use and the control of the broad-band micro-bunching Plasma Cascade Amplifier with bandwidth of 15 THz. We will also discuss connection of this experiment with the developing the CeC cooler for future Electron Ion Collider.
 
slides icon Slides WEOYGD2 [18.592 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST031 RHIC Polarized Proton Operation in Run 22 1765
 
  • V. Schoefer, E.C. Aschenauer, D. Bruno, K.A. Drees, W. Fischer, C.J. Gardner, K. Hock, H. Huang, R.L. Hulsart, C. Liu, Y. Luo, I. Marneris, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, J. Sandberg, W.B. Schmidke, F. Severino, T.C. Shrey, P. Thieberger, J.E. Tuozzolo, M. Valette, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno
    BNL, Upton, New York, USA
 
  The Relativistic Heavy Ion Collider (RHIC) Run 22 physics program consisted of collisions with vertically po- larized proton beams at a single collision point (the STAR detector). During initial startup of the collider, power out- ages damaged two of the coils in one of the RHIC helical dipole snake magnets used for polarization preservation in the Blue ring. That snake was reconfigured for use as a partial snake. We will outline some of the remediating mea- sures taken to maximize polarization transmission in this configuration. These measures included changing the col- liding beam energy from 255 GeV to 254.2 GeV to adjust the spin closed orbit at store and adjustment of the field in the other helical dipole in the Blue ring to improve injection spin matching. Later in the run, the primary motor gener- ator for the AGS (the injector to RHIC) failed and a lower voltage backup had to be used, resulting in a period of lower polarization. Other efforts include detailed measurement of the stable spin direction at store and the commissioning of a machine protection relay system to prevent spurious firing of the RHIC abort kickers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST031  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT032 Summary of the 3-year Beam Energy Scan II operation at RHIC 1908
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Beam Energy Scan phase II (BES-II) operation in the Relativistic Heavy Ion Collider (RHIC), aiming to explore the phase transition between quark-gluon plasma (QGP) and hadronic gas, exceeded the goal of a four-fold increase in the average luminosity over the range of five gold beam energies (9.8, 7.3, 5.75, 4.59 and 3.85 GeV/nucleon) compared to those achieved during Beam Energy Scan phase I (BES-I). We will present the achievements in BES-II together with a summary of the measures taken to improve RHIC performance in the presence of several beam dynamics effects, and details on improvements made during the operation at 3.85 GeV/nucleon in 2021.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT032  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT033 Report of RHIC Beam Operation in 2021 1912
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The first priority of RHIC operation in 2021 was the Au+Au collisions at 3.85 GeV/nucleon, which is the lowest energy to complete the 3-year Beam Energy Scan II physics program, with RF-based electron cooling. In addition, RHIC also operated for several other physics programs including fixed target experiments, O+O at 100 GeV/nucleon, Au+Au at 8.65 GeV/nucleon, and d+Au at 100 GeV/nucleon. This report presents the operational experience and the results from RHIC operation in 2021. With Au+Au collisions at 3.85 GeV/nucleon reported in a separate report, this paper focuses on the operation conditions for the other programs mentioned above.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT033  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)