Author: Marcus, G.
Paper Title Page
TUIYSP3
Research and Development Towards Cavity-Based X-ray Free-Electron Lasers  
 
  • G. Marcus
    SLAC, Menlo Park, California, USA
 
  Cavity-based X-ray free-electron laser concepts such as the regenerative amplifier FELs (RAFEL) and the X-ray FEL oscillator (XFELO) offer a promising path towards enhancing the brightness of XFELs by up to two orders of magnitude. We will present the ongoing research effort at the SLAC National Accelerator Laboratory and Argonne National Laboratory to demonstrate these concepts. We will discuss recent experimental tests of X-ray cavity performance and present plans for a proof-of-principle experiment at LCLS, as well as ideas for future cavity-based XFEL facilities.  
slides icon Slides TUIYSP3 [13.475 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT036 Two and Multiple Bunches with the LCLS Copper Linac 1089
 
  • F.-J. Decker, W.S. Colocho, A. Halavanau, A.A. Lutman, J.P. MacArthur, G. Marcus, R.A. Margraf, J.C. Sheppard, J.J. Turner, S. Vetter
    SLAC, Menlo Park, California, USA
 
  Two, four, and even eight bunches were accelerated through the copper linac. Two and four bunches were delivered successfully to photon experiments in both the hard (HXR) and soft (SXR) LCLS x-ray lines. In this paper we will concentrate on the more challenging issues, such as: the BPM deconvolution for both bunches, RF kicks at longer separations, tuning challenges, bridging the communications gap between the photon and electron side, the lower bunch charges for the eight bunch case, and rapid timing scans over several ns. We will describe some of the developed solutions and plans for the rest.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT036  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT039 Characterization of Diamond with Buried Boron-Doped Layer Developed for Q-Switching an X-Ray Optical Cavity 1097
 
  • R.A. Margraf, A. Halavanau, Z. Huang, J. Krzywiński, J.P. MacArthur, G. Marcus, M.L. Ng, A.R. Robert, R. Robles, T. Sato, D. Zhu
    SLAC, Menlo Park, California, USA
  • Z. Huang, F. Ke, R. Robles, Y. Zhong
    Stanford University, Stanford, California, USA
  • S.-K. Mo, Y. Zhong
    LBNL, Berkeley, California, USA
  • P. Pradhan
    ANL, Lemont, Illinois, USA
  • A.R. Robert
    MAX IV Laboratory, Lund University, Lund, Sweden
  • M.D. Ynsa
    UAM, Madrid, Spain
 
  Funding: This work was supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC02-76SF00515.
X-ray Free-Electron Laser Oscillators (XFELOs) and X-ray Regenerative Amplifier FELs (XRAFELs) are currently in development to improve longitudinal coherence and spectral brightness of XFELs. These schemes lase an electron beam in an undulator within an optical cavity to produce X-rays. X-rays circulate in the cavity and interact with fresh electron bunches to seed the FEL process over multiple passes, producing progressively brighter and more spectrally pure X-rays. Typically, the optical cavities used are composed of Bragg-reflecting mirrors to provide high reflectivity and spectral filtering. This high reflectivity necessitates special techniques to out-couple X-rays from the cavity to deliver them to users. One method involves "Q-switching" the cavity by actively modifying the reflectivity of one Bragg-reflecting crystal. To control the crystal lattice constant and thus reflectivity, we use an infrared laser to heat a buried boron layer in a diamond crystal. Here, we build on earlier work in Krzywinski et al.* and present the current status of our Q-switching diamond, including implantation with 9 MeV boron ions, annealing, characterization and early tests.
*Krzywinski et al., "Q-switching of X-Ray Optical Cavities by using Boron Doped Buried Layer under a Surface of a Diamond Crystal," Proceedings of FEL2019, Hamburg, Germany, TUP033, 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT039  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS052 Considerations From Deploying, Commissioning, and Maintaining the Control System for LCLS-II Undulators 1546
 
  • M.A. Montironi, C.J. Andrews, G. Marcus, H.-D. Nuhn
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by Department of Energy, Office of Basic Energy Sciences, contract DE-AC02-76SF00515
Two new undulator lines have been installed as part of the Linac Coherent Light Source upgrade (LCLSII) at SLAC National Accelerator Laboratory. One undulator line, composed of 21 horizontally polarizing undulator segments, is dedicated to producing Soft X-Rays (SXR). The other line, composed of 32 vertically polarizing undulator segments, is dedicated to producing Hard X-Rays (HXR). The devices were installed, and the control system was deployed in 2019. Commissioning culminated with the achievement of first light from the HXR undulator in the Summer of 2020 and from the SXR undulator in the Fall of 2020. Since then, both undulator lines have been successfully providing x-Rays to user experiments with very limited downtime. In this paper, we first describe the strategies utilized to simplify the deployment, commissioning, and maintenance of the control system. Such strategies include scripts for automated components calibration and monitoring, a modular software structure, and debugging manuals for accelerator operators. Then, we discuss lessons learned which could be applicable to similar projects in the future.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS052  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS053 Start-to-End Simulations of the LCLS-II HE Free Electron Laser 1549
 
  • D.B. Cesar, G. Marcus, H.-D. Nuhn, T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported in part by DOE Contract No. DE-AC02-76SF00515
In this proceeding we present start-to-end simulations of the LCLS-II-HE free electron laser. The HE project will extend the LCLS-II superconducting radio-frequency (SRF) linac from 4 GeV to 8 GeV in order to produce hard x-rays from the eponymous hard x-ray undulators (26 mm period). At the same time, soft x-ray performance is preserved (and extended into the tender regime) by using longer period undulators (56 mm period) than were originally built for LCLS-II (39 mm period). Here we use high-fidelity numerical particle simulations to study the performance of several SASE beamline configurations, and compare the resulting x-ray energy, power, duration, and transverse properties. Using the LCLS-II normal-conducting gun, we find that the x-ray pulse energy drops off rapidly above ~15 keV, while using the lower emittance beam from a proposed SRF gun, we improve the cutoff to ~20 keV.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS053  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)