Author: Lorey, C.L.
Paper Title Page
MOPOPT028 Beam Diagnostics and Instrumentation for MESA 307
 
  • M. Dehn, K. Aulenbacher, J. Diefenbach, F. Fichtner, P. Heil, R.G. Heine, R.F.K. Kempf, C. Matejcek
    IKP, Mainz, Germany
  • C.L. Lorey
    KPH, Mainz, Germany
 
  Funding: Work supported by PRISMA and the German federal state of Rheinland-Pfalz
For the new Mainz Energy recovering Superconducting Accelerator (MESA) a wide range of beam currents is going to be used during machine optimization and for the physics experiments. To be able to monitor beam parameters like beam current, phases and beam positions several different kinds of beam instrumentation is foreseen. Some components have already been tested at the Mainz Microtron (MAMI) and others have been used at the MELBA test accelerator. In this paper we will present the current status of the instrumentation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT028  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT050 Investigation of Polarization Dependent Thomson Scattering in an Energy-Recovering Linear Accelerator on the Example of Mesa 1114
SUSPMF018   use link to see paper's listing under its alternate paper code  
 
  • C.L. Lorey, A. Meseck
    KPH, Mainz, Germany
 
  Funding: GRK 2128 AccelencE funded by the DFG
At the Johannes Gutenberg University (JGU) in Mainz, a new accelerator is currently under construction in order to deliver electron beams of up to 155 MeV to two experiments. The Mainz Energy-recovering Superconducting Accelerator (MESA) will offer two modes of operation, one of which is an energy-recovering (ER) mode. As an ERL, MESA, with it’s high brightness electron beam, is a promising accelerator for supplying a Thomson back scattering based Gamma source. Furthermore, at MESA, the polarization of the electron beam can be set by the injector. The aim of this work is to provide a concept and comprehensive analysis of the merit and practical feasibility of a Thomson backscattering source at MESA under consideration of beam polarization and transversal effects. In this paper, an overview and results of our semi analytical approach to calculate various Thomson back scattering light source scenarios at MESA will be given. Furthermore we will discuss the benefits of using polarized electrons in combination with a polarized laser beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT050  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK032 A Vacuum System for the Milliampere Booster 2833
 
  • R.G. Heine, C.L. Lorey
    KPH, Mainz, Germany
 
  The Milliampere Booster (MAMBO) is the injector linac for the Mainz Energy-recovering Superconducting Accelerator MESA. MESA is a multi-turn energy recovery linac with beam energies in the 100 MeV regime currently designed and built at Institut für Kernphysik (KPH) of Johannes Gutenberg-Universität Mainz. The main accelerator consists of two superconducting Rossendorf type modules, while the injector MAMBO relies on normal conducting technolgy. The MAMBO RF cavities are bi-periodic pi/2 structures that are about 2m long, each. In this paper we present the results of Molflow+ simulations of several setups of the vacuum system for MAMBO that differ in number of pumps, pumping speed and diameter of the pumping ports that are connected to the DN40 beam pipe.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK032  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)