Author: Kukstas, E.
Paper Title Page
WEPOST041 Physical Aspects of Collinear Laser Injection at SLAC FACET-II E-310: Trojan Horse Experiment 1787
 
  • M. Yadav, Ö. Apsimon, E. Kukstas, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.E. Hansel, P. Manwani, B. Naranjo, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • B. Hidding
    USTRAT/SUPA, Glasgow, United Kingdom
 
  Funding: This work was performed with support of the US Department of Energy, Division of High Energy Physics, un-der Contract No. DE-SC0009914, and the STFC grant ST/P006752/1.
The Facility for Advanced Accelerator Experimental Tests (FACET-II) is a test accelerator infrastructure at SLAC dedicated to the research and development of advanced accelerator technologies. We performed simulations of electron beam driven wakefields, with collinear lasers used for ionization injection of electrons. We numerically generated a witness beam using the OSIRIS code in an up ramp plasma as well as uniform plasma regimes. We report on challenges and details of the E-310 experiment which aims to demonstrate this plasma photocathode injection at FACET-II. We examine the phenomena beam hosing and drive beam depletion. Details of the witness beam generated are discussed. Computation of betatron-radiation X-ray spatial distribution and critical energy are done for FACET-II low emittance beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST041  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST043 An Effective-Density Model for Accelerating Fields in Laser-Graphene Interactions 1795
 
  • C. Bonțoiu, Ö. Apsimon, E. Kukstas, C.P. Welsch, M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
  • A. Bonatto
    Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
  • J. Resta-López
    ICMUV, Paterna, Spain
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Funding: This work was supported by STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT)
With the advancement of high-power UV laser technology, the use of nanostructures for particle acceleration attracts renewed interest due to its possibility of achieving TV/m accelerating gradients in solid state plasmas. Electron acceleration in ionized materials such as carbon nanotubes and graphene is currently considered as a potential alternative to the usual laser wakefield acceleration (LWFA) schemes. An evaluation of the suitability of a graphene target for LWFA can be carried out using an effective density model, thus replacing the need to model each layer. We present a 2D evaluation of the longitudinal electric field driven by a short UV laser pulse in a multi-layer graphene structure, showing that longitudinal fields of ~5 TV/m are achievable.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST043  
About • Received ※ 20 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK032 Fast Electromagnetic Models of Existing Beamline Simulations 2130
 
  • S. Padden, E. Kukstas, P. Pusa, V. Rodin, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • S. Padden, V. Rodin, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The AD-ELENA complex decelerates antiprotons to ener- gies of 100 keV before transport to experiments through elec- trostatic transfer lines. Transfer line optics are traditionally designed from a lattice based approach and are unaffected by external effects. Presented is a method of rapidly proto- typing MAD-X simulations into G4Beamline models which propagate particles via electromagnetic fields rather than idealised optical lattice parameters. The transfer line to the ALPHA experiment is simulated in this approach. Due to the presence of fringe fields disagreement is found between the two models. Using an error minimisation technique, revised quadrupole strengths are found which improve agreement by 30% without any manual adjustment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK032  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)