Author: Kim, C.
Paper Title Page
MOPOTK022 A Design Study of Injector System for Synchrotron Light Source 485
SUSPMF054   use link to see paper's listing under its alternate paper code  
 
  • C. Kim, E.-S. Kim, C.S. Park
    KUS, Sejong, Republic of Korea
 
  This work presents a design study of a 200 MeV electron linear accelerator consisting of an electron gun, bunchers, and accelerator structures. We aimed to design the linac with low emittance and low energy spread. A coasting beam from a thermionic electron gun is bunched using a series of buncher cavities: sub-harmonic buncher (SHB), a pre-buncher (PB), and a Buncher. The bunched beam is then accelerated up to 200 MeV with 4 cascaded accelerating structures. The SHB was designed with one-cell standing wave structure for improving the bunching efficiency. The two types of the 500 MHz SHB were considered: elliptical and coupled-cavity linac types. We also investigated constant-gradient and constant-impedance types of 3 GHz multi-cell traveling wave resonators for following buncher cavities and accelerating structures. Depending on the type, geometries of each traveling wave structure (TWS) cavity were determined, and then the electromagnetic fields were calculated. RF powers and phases of each cavity along this linac system were optimized using beam dynamics simulation. Furthermore, the beam distributions in the transverse direction are adjusted using solenoid magnets in the lowenergy section as well as quad triplets in the high-energy section.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK022  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 10 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK023 Beam Dynamics Studies on the 50 MeV Electron Linear Accelerator for Ultra-High Dose Rates 489
 
  • Y. Lee, C. Kim, E.-S. Kim, C.S. Park
    KUS, Sejong, Republic of Korea
  • H.-S. Lee, H.S. Shin
    VITZRONEXTECH, Ansan-si, Gyeonggi-do, Republic of Korea
 
  Electron beams with ultra-high dose rates (>40 Gy/s), which enable effective radiotherapy to act on deep-seated tumors in less than a second, can be generated by linear accelerators. To successfully achieve FLASH radiotherapy, we have performed the 50 MeV linear accelerator design studies. The designed electron accelerator consists of a thermionic electron gun, sub-harmonic buncher, buncher and 2.856 GHz traveling wave structure. In this report the design layout and particle tracking simulation results of the 50 MeV electron linac with high beam current are presented in detail.
FLASH radiotherapy
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK023  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)