Author: Kanesue, T.
Paper Title Page
WEPOPT032 Summary of the 3-year Beam Energy Scan II operation at RHIC 1908
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Beam Energy Scan phase II (BES-II) operation in the Relativistic Heavy Ion Collider (RHIC), aiming to explore the phase transition between quark-gluon plasma (QGP) and hadronic gas, exceeded the goal of a four-fold increase in the average luminosity over the range of five gold beam energies (9.8, 7.3, 5.75, 4.59 and 3.85 GeV/nucleon) compared to those achieved during Beam Energy Scan phase I (BES-I). We will present the achievements in BES-II together with a summary of the measures taken to improve RHIC performance in the presence of several beam dynamics effects, and details on improvements made during the operation at 3.85 GeV/nucleon in 2021.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT032  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT033 Report of RHIC Beam Operation in 2021 1912
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The first priority of RHIC operation in 2021 was the Au+Au collisions at 3.85 GeV/nucleon, which is the lowest energy to complete the 3-year Beam Energy Scan II physics program, with RF-based electron cooling. In addition, RHIC also operated for several other physics programs including fixed target experiments, O+O at 100 GeV/nucleon, Au+Au at 8.65 GeV/nucleon, and d+Au at 100 GeV/nucleon. This report presents the operational experience and the results from RHIC operation in 2021. With Au+Au collisions at 3.85 GeV/nucleon reported in a separate report, this paper focuses on the operation conditions for the other programs mentioned above.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT033  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK019 Status of the Laser Ion Source Upgrade (LION2) at BNL 2087
 
  • T. Kanesue, B.D. Coe, S. Ikeda, S.A. Kondrashev, C.J. Liaw, M. Okamura, R.H. Olsen, T. Rodowicz, R. Schoepfer, L. Smart, D. Weiss, Y. Zhang
    BNL, Upton, New York, USA
  • A. Cannavò
    NPI, Řež near Prague, Czech Republic
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, and by the National Aeronautics and Space Administration.
A laser ion source (LION) at Brookhaven National Labor-atory (BNL) has been operational since 2014 to provide low charge state heavy ions of various species for Rela-tivistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Pulsed ion beams (100~300 µs) with beam current ranging from 100 µA to 1 mA from any solid-state targets can be supplied without memory effect of previous beams at pulse-by-pulse basis. LION is an essential device for the operation of a galactic cosmic ray simulator at NSRL together with high-performance beams for RHIC. Because the importance of LION has been widely recognized, an upgraded version of LION, which is called LION2, is being developed for improved performance and reliability. The design and status of the LION2 will be shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK019  
About • Received ※ 15 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK020 Slanted Beam Extraction on Laser Ion Source 2090
 
  • M. Okamura, S. Ikeda, T. Kanesue, S.A. Kondrashev
    BNL, Upton, New York, USA
  • A. Cannavò
    NPI, Řež near Prague, Czech Republic
 
  Funding: US DOE, Office of Science, under contract DE-SC0012704.
Laser ion sources generate plasma and supply ions by focusing energy by light onto a solid surface. The ionization is achieved during the pulsed laser irradiation period. Then the plasma expands vertically from the target surface as it moves forward. Usually, this drift distance is chosen from tens of centimeters to several meters. Once the required pulse width and plasma density are met, an extraction electric field is applied. In most cases, this electric field is set in the same direction as the direction of the plasma. In this study, we experimentally verify how performance is achieved when the direction of the extraction field is at an angle to the direction of motion of the plasma. If the extraction field can be slanted without degradation of the ion source performance, it is considered to be able to shield neutral vapors and debris generated simultaneously with the plasma, which will be advantageous for the long-term operation of the laser ion source.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK020  
About • Received ※ 09 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)