Author: Jankowiak, A.
Paper Title Page
TUPOMS010 BESSY III Status Report and Lattice Design Process 1417
 
  • P. Goslawski, M. Abo-Bakr, M. Arlandoo, J. Bengtsson, K. Holldack, A. Jankowiak, B.C. Kuske, A. Meseck, M.K. Sauerborn, M. Titze, J. Viefhaus, J. Völker
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
Since 2020 a detailed discussion about a BESSY~II successor is ongoing at HZB and its user community in order to define the science and layout of the new facility. Still free locations close to BESSY~II have triggered a discussion about a greenfield project, but in-house upgrade solutions have also been investigated. As an additional boundary condition, BESSY~III has to meet the requirement of the Physikalische Technische Bundesanstalt (PTB) for radiation sources for metrology applications and bending magnet sources for tender X-rays. A Conceptional Design Report is in preparation. Here, we give a status report including a first parameter space, technical specifications and a first candidate for the linear lattice.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS010  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK001 Variable Permanent Hybrid Magnets for the Bessy III Storage Ring 2763
 
  • J. Völker, V. Dürr, P. Goslawski, A. Jankowiak, M. Titze
    HZB, Berlin, Germany
 
  The Helmholtz Zentrum Berlin (HZB) is working on the conceptual design of a successor source to BESSY II, an new BESSY III facility, designed for a beam energy of 2.5GeV and based on a multi-bend achromat (MBA) lattice for a low emittances of 100pm-rad. Bending and focusing magnets in the MBA cells should consist of permanent magnets (PM), to allow for a competitive and compact lattice, to increase the magnetic stability and to decrease the electric power consumption of the machine. However, using pure permanent magnet systems would result in a completely fixed lattice. Therefore, we are developing Variable Permanent Hybrid Magnets (VPHM), combining PM materials like NdFeB with a surrounding soft iron yoke and additional electric coils. This design can achieve the same field strength and field quality as conservative magnets, with only a small fraction of the electric power consumption, and a ca. 10% variability in the field amplitudes. In this paper, design and first optimization results of the magnets will be presented, which are a promising option for the new BESSY III facility, and an estimated reduction in total power consumption for the magnet lattice of up to 80%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK001  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)