Author: Iwashita, Y.
Paper Title Page
TUPOMS046 Fabrication and Low-Power Test of Disk-and-Washer Cavity for Muon Acceleration 1534
 
  • Y. Takeuchi, J. Tojo
    Kyushu University, Fukuoka, Japan
  • E. Cicek, H. Ego, K. Futatsukawa, N. Kawamura, T. Mibe, M. Otani, N. Saito, T. Yamazaki, M. Yoshida
    KEK, Ibaraki, Japan
  • Y. Iwashita
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • R. Kitamura, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Kondo
    JAEA, Ibaraki-ken, Japan
  • Y. Nakazawa
    Ibaraki University, Hitachi, Ibaraki, Japan
  • Y. Sue, K. Sumi, M. Yotsuzuka
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
 
  The muon g-2/EDM experiment is under preparation at Japan Proton Accelerator Research Complex (J-PARC), and the muon linear accelerator for the experiment is being developed. A Disk-and-Washer (DAW) cavity will be used for the medium-velocity part of the accelerator, and muons will be accelerated from v/c=ß=0.3 to 0.7 with the operating frequency of 1.296 GHz. Machining, brazing, and low-power measurements of a prototype cell reflecting the design of the first tank of DAW were performed to identify fabrication problems. Several problems were identified, such as displacement of washers during brazing, and some measures will be taken in the actual tank fabrication. In this paper, the results of the prototype cell fabrication will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS046  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS051 Study on Construction of an Additional Beamline for a Compact Neutron Source Using a 30 Mev Proton Cyclotron 3087
 
  • Y. Kuriyama, M. Hino, Y. Iwashita, R.N. Nakamura, H. Tanaka
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  The Institute for Integrated Radiation and Nuclear Science, Kyoto University (KURNS) has been actively using neutrons extracted from the research reactor (KUR) for collaborative research. Since the operation of KUR is scheduled to be terminated in 2026 according to the current reactor operation plan, the development of a general-purpose neutron source using the 30 MeV proton cyclotron (HM-30) installed at KURNS for Boron Neutron Capture Therapy (BNCT) research has been discussed as an alternative neutron source. In this presentation, we report on the conceptual design of an additional beamline for a compact neutron source using this cyclotron.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS051  
About • Received ※ 20 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS052 Magnetic Field Shield for SC-Cavity with Thin Nb Sheet 3090
 
  • Y. Iwashita, Y. Kuriyama
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • Y. Fuwa
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
 
  Funding: This work was partly supported by JSPS KAKENHI Grant Number 19K21877.
Shielding the superconducting accelerating cavity made of niobium from the weak environmental magnetic field is an important subject. Niobium is a type-II superconductor, which traps the environmental magnetic flux in the material during the superconducting transition, resulting in increase of residual resistance and heating during operation during operation. Shielding from a weak magnetic field is essential for high performance operations. A magnetic shielding method that uses the diamagnetism of superconducting materials instead of magnetic flux absorption by high magnetic permeability materials is discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS052  
About • Received ※ 14 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)