Author: Gutberlet, T.
Paper Title Page
MOPOST016 Proton Linac Design for the High Brilliance Neutron Source HBS 90
 
  • M. Schwarz, M. Droba, K. Kümpel, S. Lamprecht, O. Meusel, N.F. Petry, H. Podlech
    IAP, Frankfurt am Main, Germany
  • J. Baggemann, Th. Brückel, T. Gutberlet, E. Mauerhofer, U. Rücker, A. Schwab, P. Zakalek
    JCNS, Jülich, Germany
  • J. Li
    IEK, Jülich, Germany
  • C. Zhang
    GSI, Darmstadt, Germany
 
  Due to the decommissioning of several reactors, only about half of the neutrons will be available for research in Europe in the next decade despite the commissioning of the ESS. High-Current Accelerator-driven Neutron Sources (HiCANS) could fill this gap. The High Brilliance Neutron Source (HBS) currently under development at Forschungszentrum Jülich is scalable in terms of beam energy and power due to its modular design. The driver linac will accelerate a 100 mA proton beam to 70 MeV. The linac is operated with a beam duty cycle of up to 13.6 % (15.3 % RF duty cycle) and can simultaneously deliver three pulse lengths (208 µs, 833 µs and 2 ms) for three neutron target stations. In order to minimize the development effort and the technological risk, state-of-the-art technology of the MYRRHA injector is used. The HBS linac consists of a front end (ECR source, LEBT, 2.5 MeV double RFQ) and a CH-DTL section with 44 room temperature CH-cavities. All RF structures are operated at 176.1 MHz and are designed for high duty cycle. Solid-state amplifiers up to 500 kW are used as RF drivers. Due to the beam current and the high average beam power of up to 952 kW, particular attention is paid to beam dynamics. In order to minimize beam losses, a quasi-periodic lattice with constant negative phase is used. This paper describes the conceptual design and the challenges of a modern high-power and high-current proton accelerator with high reliability and availability.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST016  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 11 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS041 High Power RF-Cavity Development for the HBS-Driver LINAC 1516
 
  • M. Basten, K. Aulenbacher, W.A. Barth, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu, M. Vossberg, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher, W.A. Barth, M. Basten, C. Burandt, F.D. Dziuba, V. Gettmann, T. Kürzeder, S. Lauber, J. List, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, S. Lauber, J. List
    KPH, Mainz, Germany
  • T. Gutberlet
    JCNS, Jülich, Germany
  • H. Podlech
    IAP, Frankfurt am Main, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
 
  Neutron research in Europe is mainly based on various nuclear reactors that will be successively decommissioned over the next years. This means that despite the commissioning of the European Spallation Source ESS, many neutron research centres, especially in the medium flux regime, will disappear. In response to this situation, the Jülich Centre for Neutron Science (JCNS) has begun the development of a scalable, compact, accelerator-based High Brilliance neutron Source (HBS). A total of three different neutron target stations are planned, which can be operated with a 100 mA proton beam of up to 70 MeV and a duty cycle of up to 6%. The driver Linac consists of an Electron Cyclotron Resonance (ECR) ion source followed by a LEBT section, a 2.5 MeV double Radio-Frequency Quadrupole (RFQ) and 35 normal conducting (NC) Crossbar H-Mode (CH) cavities. The development of the cavities is carried out by the Institute for Applied Physics (IAP) at the Goethe University Frankfurt am Main. Due to the high beam current, all cavities as well as the associated tuners and couplers have to be optimised for operation under high thermal load to ensure safe operation. In collaboration with the GSI Centre for Heavy Ion Research as the ideal test facility for high power tests, two cavities and the associated hardware are being designed and will be tested. The design and latest status of both cavities will be presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS041  
About • Received ※ 18 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)