Author: Gilardi, A.
Paper Title Page
TUPOST055 Toward Machine Learning-Based Adaptive Control and Global Feedback for Compact Accelerators 991
 
  • F.W. Cropp V, P. Musumeci
    UCLA, Los Angeles, USA
  • D. Filippetto, A. Gilardi, S. Paiagua, D. Wang
    LBNL, Berkeley, California, USA
  • A. Scheinker
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by the DOE Office of Science Graduate Student Research (SCGSR) program, by the DOE Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231, … continued
The HiRES beamline at Lawrence Berkeley National Laboratory (USA) is a state-of-the-art compact accelerator providing ultrafast relativistic electron pulses at MHz repetition rates, for applications in ultrafast science and for particle accelerator science and technology R&D. Using HiRES as testbed, we seek to apply recent developments in machine learning and computational techniques for machine-learning-based adaptive control, and eventually, a full control system based on global feedback. The ultimate goal is to demonstrate the benefits of such a suite of controls to UED, including increased temporal and spatial resolution. Concrete steps toward these goals are presented, including automatic, model-independent tuning for accelerators, and energy virtual diagnostics with direct application to improving UED temporal resolution.
… [continued from below] by the DOE Office of Science, Office of High Energy Physics under contract number 89233218CNA000001 and DE-AC02-05CH11231 and by the NSF under Grant No. PHY-1549132.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST055  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)