Author: Frame, E.A.
Paper Title Page
WEPOPT065 Simulations of the Upgraded Drive-Beam Photoinjector at the Argonne Wakefield Accelerator 2015
 
  • E.A. Frame, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S.Y. Kim, X. Lu, J.G. Power, D.S. Scott, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: Department of Energy
The Argonne Wakefield Accelerator (AWA) is planning to upgrade its photoinjector for the drive-beam accelerator. The main goal of the upgrade is to improve the beam brightness using a symmetrized RF-gun cavity. In the process, the photoinjector was reconfigured and some of the solenoid magnets redesigned. A challenging aspect of this optimization is that the injector should be able to produce bright low-charge (~1 nC) bunches while also being capable of operating at high-charge (~50 nC) bunches. This paper will discuss the optimization of the beam dynamics for the low- and high-charge cases and explore the performances of the proposed configuration using a model of the full AWA drive-beam beamline including 3D field maps for the external electromagnetic fields. The optimizations are performed with ASTRA and the DEAP toolbox and with OPAL.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT065  
About • Received ※ 08 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)