Author: El Khechen, D.
Paper Title Page
MOPOPT026 Beam Diagnostics for the Storage Ring of the cSTART Project at KIT 300
 
  • D. El Khechen, E. Bründermann, A. Mochihashi, A.-S. Müller, M.-D. Noll, A.I. Papash, R. Ruprecht, P. Schreiber, M. Schuh, J.L. Steinmann
    KIT, Eggenstein-Leopoldshafen, Germany
 
  In the framework of the compact STorage ring for Accelerator Research and Technology (cSTART) project, which will be realized at Karlsruhe Institute of Technology (KIT), a Very Large Acceptance compact Storage Ring (VLA-cSR) is planned to study the injection and the storage of 50 MeV, ultra-short (sub-ps) electron bunches from a laser plasma accelerator (LPA) and the linac-based test facility FLUTE. For such a storage ring, where a single bunch with a relatively wide range of bunch charge (1 pC - 1000 pC ) and energy spread (10’4 - 10’2) will circulate at a relatively high revolution frequency (7 MHz), the choice of beam diagnostics is very delicate. In this paper, we would like to discuss several beam diagnostics options for the storage ring and to briefly report on several tests that have been or are planned to be realized in our existing facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT026  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT027 Transverse and Longitudinal Profile Measurements at the KARA Booster Synchrotron 304
 
  • D. El Khechen, E. Blomley, E. Bründermann, E. Huttel, A. Mochihashi, A.-S. Müller, M.-D. Noll, R. Ruprecht, P. Schreiber, M. Schuh, J.L. Steinmann, C. Widmann
    KIT, Karlsruhe, Germany
 
  In the booster synchrotron of the Karlsruhe Research Accelerator (KARA), the beam is injected from the microtron at 53 MeV and ramped up to 500 MeV. Though the injected beam current from the microtron to the booster seems good, the injection efficiency into the booster is currently low due to various effects. Consequently, an upgrade of the whole beam diagnostics system is taking place in the booster, in order to improve the injection efficiency through understanding the loss mechanisms and the behavior of bunches. Among these diagnostics tools are beam loss monitors, a transverse profile monitor and a longitudinal profile monitor. In this paper, we will describe the setups used for bunch profile measurements in both transverse and longitudinal planes and report on first data analysis results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT027  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT023 Flexible Features of the Compact Storage Ring in the cSTART Project at Karlsruhe Institute of Technology 2620
 
  • A.I. Papash, A. Bernhard, E. Bründermann, D. El Khechen, B. Härer, A.-S. Müller, R. Ruprecht, J. Schäfer, M. Schwarz
    KIT, Karlsruhe, Germany
 
  Within the cSTART project (compact storage ring for accelerator research and technology), a Very Large Acceptance compact Storage Ring (VLA-cSR) will be realized at the Institute for Beam Physics and Technology (IBPT) of the Karlsruhe Institute of Technology. (KIT). A modified geometry of a compact storage ring operating at 50 MeV energy range has been studied and main features of the new model are described here. The new design, based on 45° bending magnets, is suitable to store a wide momentum spread beam as well as ultra-short electron bunches in the sub-ps range injected from the plasma cell as well as from the Ferninfrarot Linac- Und Test Experiment (FLUTE). The DBA lattice of the VLA-cSR with different settings and relaxed parameters, split elements and higher order optics of tolerable strength allows to improve the dynamic aperture and momentum acceptance to an acceptable level. This contribution discusses the lattice features in detail, expected lifetime, injection, tolerances and different possible operation schemes of the ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT023  
About • Received ※ 20 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT059 Development of a Transfer Line for LPA-Generated Electron Bunches to a Compact Storage Ring 2730
 
  • B. Härer, E. Bründermann, D. El Khechen, A.-S. Müller, A.I. Papash, S.C. Richter, R. Ruprecht, J. Schäfer, M. Schuh, C. Widmann
    KIT, Karlsruhe, Germany
  • L. Jeppe
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • A.R. Maier, J. Osterhoff, E. Panofski
    DESY, Hamburg, Germany
  • P. Messner
    University of Hamburg, Hamburg, Germany
 
  The injection of LPA-generated beams into a storage ring is considered to be one of the most prominent applications of laser plasma accelerators (LPAs). In a combined endeavour between Karlsruhe Institute of Technology (KIT) and Deutsches Elektronen-Synchrotron (DESY) the key challenges will be addressed with the aim to successfully demonstrate injection of LPA-generated beams into a compact storage ring with large energy acceptance and dynamic aperture. Such a storage ring and the corresponding transfer line are currently being designed within the cSTART project at KIT and will be ideally suited to accept bunches from a 50 MeV LPA prototype developed at DESY. This contribution presents the foreseen layout of the transfer line from the LPA to the injection point of the storage ring and discusses the status of beams optics calculations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT059  
About • Received ※ 05 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)