Author: Edelen, J.P.
Paper Title Page
MOPOTK018 Parallelization of Radia Magnetostatics Code 481
SUSPMF067   use link to see paper's listing under its alternate paper code  
 
  • A. Banerjee
    SBU, Stony Brook, New York, USA
  • J. Chavanne, G. Le Bec
    ESRF, Grenoble, France
  • O.V. Chubar
    BNL, Upton, New York, USA
  • J.P. Edelen, C.C. Hall, B. Nash
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: Work supported by the US DOE BES SBIR grant No. DE-SC0018556.
Radia 3D magnetostatics code has been used for the design of insertion devices for light sources over more than two decades. The code uses the magnetization integral approach that is efficient for solving permanent magnet and hybrid magnet structures. The initial version of the Radia code was sequential, its core written in C++ and interface in the Mathematica language. This paper describes a new Python-interfaced parallel version of Radia and its applications. The parallelization of the code was implemented on C++ level, following a hybrid approach. Semi-analytical calculations of interaction matrix elements and resultant magnetic fields were parallelized using the Message Passing Interface, whereas the parallelization of the "relaxation" procedure (solving for magnetizations in volumes created by subdivision) was executed using a shared memory method based on C++ multithreading. The parallel performance results are encouraging, particularly for magnetic field calculation post relaxation where a ~600 speedup with respect to sequential execution was obtained. The new parallel Radia version facilitates designs of insertion devices and lattice magnets for novel particle accelerators.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK018  
About • Received ※ 20 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK038 BPM Analysis with Variational Autoencoders 543
 
  • C.C. Hall, J.P. Edelen, J.A. Einstein-Curtis, M.C. Kilpatrick
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0021699.
In particle accelerators, beam position monitors (BPMs) are used extensively as a non-intercepting diagnostic. Significant information about beam dynamics can often be extracted from BPM measurements and used to actively tune the accelerator. However, common measurement tools, such as measurements of kicked beams, may become more difficult when very strong nonlinearities are present or when data is very noisy. In this work, we examine the use of variational autoencoders (VAEs) as a technique to extract measurements of the beam from simulated turn-by-turn BPM data. In particular, we show that VAEs may have the possibility to outperform other dimensionality reduction techniques that have historically been used to analyze such data. When the data collection period is limited, or the data is noisy, VAEs may offer significant advantages.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK038  
About • Received ※ 09 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST009 Online Correction of Laser Focal Position Using FPGA-Based ML Models 857
 
  • J.A. Einstein-Curtis, S.J. Coleman, N.M. Cook, J.P. Edelen
    RadiaSoft LLC, Boulder, Colorado, USA
  • S.K. Barber, C.E. Berger, J. van Tilborg
    LBNL, Berkeley, California, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Numbers DE-SC 00259037 and DE-AC02-05CH11231.
High repetition-rate, ultrafast laser systems play a critical role in a host of modern scientific and industrial applications. We present a prototype diagnostic and correction scheme for controlling and determining laser focal position at 10 s of Hz rate by utilizing fast wavefront sensor measurements from multiple positions to train a focal position predictor. This predictor is used to determine corrections for actuators along the beamline to provide the desired correction to the focal position on millisecond timescales. Our initial proof-of-principle demonstrations leverage pre-compiled data and pre-trained networks operating ex-situ from the laser system. We then discuss the application of a high-level synthesis framework for generating a low-level hardware description of ML-based correction algorithms on FPGA hardware coupled directly to the beamline. Lastly, we consider the use of remote computing resources, such as the Sirepo scientific framework* , to actively update these correction schemes and deploy models to a production environment.
* M.S. Rakitin et al., "Sirepo: an open-source cloud-based software interface for X-ray source and optics simulations", Journal of Synchrotron Radiation 25, 1877-1892 (Nov 2018).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST009  
About • Received ※ 20 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT038 FAST-GREENS: A High Efficiency Free Electron Laser Driven by Superconducting RF Accelerator 1094
 
  • P. Musumeci, P.E. Denham, A.C. Fisher, Y. Park
    UCLA, Los Angeles, USA
  • R.B. Agustsson, T.J. Hodgetts, A.Y. Murokh, M. Ruelas
    RadiaBeam, Santa Monica, California, USA
  • L. Amoudry
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • D.R. Broemmelsiek, S. Nagaitsev, J. Ruan, J.K. Santucci, G. Stancari, A. Valishev
    Fermilab, Batavia, Illinois, USA
  • D.L. Bruhwiler, J.P. Edelen, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • A.H. Lumpkin, A. Zholents
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by DOE grants DE-SC0017102, DE-SC0018559 and DE-SC0009914
In this paper we’ll describe the FAST-GREENS experimental program where a 4 m-long strongly tapered helical undulator with a seeded prebuncher is used in the high gain TESSA regime to convert a significant fraction (up to 10 %) of energy from the 240 MeV electron beam from the FAST linac to coherent 515 nm radiation. We’ll also discuss the longer term plans for the setup where by embedding the undulator in an optical cavity matched with the high repetition rate from the superconducting accelerator (3,9 MHz), a very high average power laser source can be obtained. Eventually, the laser pulses can be redirected onto the relativistic electrons to generate by inverse compton scattering a very high flux of circularly polarized gamma rays for polarized positron production.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT038  
About • Received ※ 09 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)