Author: Diaz Cruz, J.A.
Paper Title Page
MOPOPT058 Machine Learning Training for HOM Reduction in a TESLA-Type Cryomodule at FAST 400
SUSPMF099   use link to see paper's listing under its alternate paper code  
 
  • J.A. Diaz Cruz
    UNM-ECE, Albuquerque, USA
  • J.A. Diaz Cruz, A.L. Edelen, B.T. Jacobson, J.P. Sikora
    SLAC, Menlo Park, California, USA
  • D.R. Edstrom, A.H. Lumpkin, R.M. Thurman-Keup
    Fermilab, Batavia, Illinois, USA
 
  Low emittance electron beams are of high importance at facilities like the Linac Coherent Light Source II (LCLS-II) at SLAC. Emittance dilution effects due to off-axis beam transport for a TESLA-type cryomodule (CM) have been shown at the Fermilab Accelerator Science and Technology (FAST) facility. The results showed the correlation between the electron beam-induced cavity high-order modes (HOMs) and the Beam Position Monitor (BPM) measurements downstream the CM. Mitigation of emittance dilution can be achieved by reducing the HOM signals. Here, we present a couple of Neural Networks (NN) for bunch-by-bunch mean prediction and standard deviation prediction for BPMs located downstream the CM.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT058  
About • Received ※ 15 June 2022 — Revised ※ 18 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST027 Machine Learning-Based Tuning of Control Parameters for LLRF System of Superconducting Cavities 915
 
  • J.A. Diaz Cruz, S. Biedron
    UNM-ECE, Albuquerque, USA
  • J.A. Diaz Cruz
    SLAC, Menlo Park, California, USA
  • R. Pirayesh
    UNM-ME, Albuquerque, New Mexico, USA
  • S. Sosa
    ODU, Norfolk, Virginia, USA
 
  The multiple systems involved in the operation of particle accelerators use diverse control systems to reach the desired operating point for the machine. Each system needs to tune several control parameters to achieve the required performance. Traditional Low-Level RF (LLRF) systems are implemented as proportional-integral feedback loops, whose gains need to be optimized. In this paper, we explore Machine Learning (ML) as a tool to improve a traditional LLRF controller by tuning its gains using a Neural Network (NN). We present the data production scheme and a control parameter optimization using a NN. The NN training is performed using the THETA supercomputer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST027  
About • Received ※ 14 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)