Author: Di Mitri, S.
Paper Title Page
MOPOTK016 Arc Compressor Test in a Synchrotron - the ACTIS Project 473
 
  • M. Rossetti Conti, A. Bacci, I. Drebot, V. Petrillo, A.R. Rossi, M. Ruijter, L. Serafini
    INFN-Milano, Milano, Italy
  • A. Curcio
    CLPU, Villamayor, Spain
  • S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G.W. Kowalski, R. Panaś, A.I. Wawrzyniak
    NSRC SOLARIS, Kraków, Poland
  • V. Petrillo
    Universita’ degli Studi di Milano, Milano, Italy
  • E. Puppin
    Politecnico/Milano, Milano, Italy
 
  ACTIS (Arc Compressor Test In a Synchrotron) is an experiment aimed to demonstrate the reliability of arc compressors as lattices capable to increase peak current and brightness of an electron beam as it is bent at large angles. This kind of devices has been proposed at theoretical level in several works over the past decades and could be the key to achieve compact and sustainable Free Electron Lasers in the near future. The experiment has been developed since 2019 in the joint effort between INFN, Solaris National Synchrotron Radiation Center and Elettra - S.T. S.C.p.A. The experiment will take place at Solaris (Kraków). Solaris is a synchrotron whose ring is injected by a 550 MeV linac that will be used to prepare the beam with a proper chirp. ACTIS involves also the commissioning of two beam length detectors to be installed downstream of the linac and of the first ring lap. In addition, the low energy model of the machine was built to identify the optimal working point for the experiment and to foresee the longitudinal profile of the beam that will be measured. In this work we present the experiment and report first results obtained in the study phase.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK016  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT018 Fermi 2.0 Future Upgrade Strategy 1041
 
  • L. Giannessi, E. Allaria, L. Badano, F. Bencivenga, C. Callegari, F. Capotondi, D. Castronovo, P. Cinquegrana, M. Coreno, M.B. Danailov, G. De Ninno, P. Delgiusto, A.A. Demidovich, S. Di Mitri, B. Diviacco, W.M. Fawley, M. Ferianis, G. Gaio, F. Gelmetti, G. Kurdi, M. Lonza, M. Malvestuto, M. Manfredda, C. Masciovecchio, I. Nikolov, G. Penco, K.C. Prince, E. Principi, P. Rebernik Ribič, C. Scafuri, N. Shafqat, P. Sigalotti, A. Simoncig, F. Sottocorona, S. Spampinati, C. Spezzani, L. Sturari, M. Trovò, M. Veronese, R. Visintini, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Coreno
    CNR-ISM, Trieste, Italy
  • G. Penn
    LBNL, Berkeley, California, USA
  • G. Perosa
    Università degli Studi di Trieste, Trieste, Italy
  • T. Tanaka
    RIKEN SPring-8 Center, Hyogo, Japan
 
  FERMI is studying a series of developments to keep the facility in a world-leading position on the base of the requests coming from the user community, the Scientific Advisory Council and the Machine Advisory Committee. The ultimate goal of the development plan consists in doubling the photon energy range and reducing the pulse duration below the characteristic lifetime of the atomic core levels located in the energy range of the source. One of the most promising approaches is the echo-enabled harmonic generation (EEHG) scheme, relying on two external lasers to precisely control the spectro-temporal properties of the FEL pulse. The implementation of EEHG in the double-stage harmonic cascade presently in use on FEL-2, would allow harmonics as high as 120 enabling to generate coherent pulses down to 2 nm starting from UV lasers. An upgrade of FERMI aimed at reaching the oxygen K-edge requires a profound modification of the FEL configurations and of the main components of the machine, including the linac and the undulator lines. The main aspects of the upgrade strategy will be discussed in this presentation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT018  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT019 FERMI FEL-1 Upgrade to EEHG 1044
 
  • C. Spezzani, E. Allaria, L. Badano, D. Castronovo, P. Cinquegrana, M.B. Danailov, R. De Monte, G. De Ninno, P. Delgiusto, A.A. Demidovich, S. Di Mitri, B. Diviacco, M. Ferianis, G. Gaio, F. Gelmetti, L. Giannessi, G. Kurdi, M. Lonza, C. Masciovecchio, I. Nikolov, G. Penco, P. Rebernik Ribič, C. Scafuri, N. Shafqat, P. Sigalotti, F. Sottocorona, S. Spampinati, L. Sturari, M. Trovò, M. Veronese, R. Visintini
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G. Perosa
    Università degli Studi di Trieste, Trieste, Italy
 
  The Fermi free-electron laser (FEL) facility is operating since 2010 providing the user community with ultrashort pulses in the VUV- XUV range. Using the High Gain Harmonic Generation (HGHG) setup, nearly transform-limited pulses with gigawatt peak power are made available. Furthermore, several multicolor and coherent control schemes are possible and highly required from the user community. To meet the request of extending the spectral range over the whole water window, an upgrade strategy of the FERMI facility has recently initiated. During the first phase of the upgrade, the single cascade FEL-1 will be adapted to operate either in Echo Enabled Harmonic Generation (EEHG) or in HGHG. Required modifications can be achieved with limited impact on FERMI operations and will improve FEL-1’s spectral range, spectral quality and flexibility. The second phase includes modification of the FEL-2 setup and will benefit from the experience gained with phase 1. The two phases will proceed in parallel to the linac upgrade aiming at extending the beam energy to 1.8 GeV. We report here details on the upgrade of the FEL-1 foreseen to provide light to users in the new configuration by spring 2023.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT019  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)