Author: Desmons, M.J.
Paper Title Page
TUPOTK003 High Power RF Conditioning of the ESS RFQ 1189
 
  • O. Piquet, A.C. Chauveau, P. Hamel
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Baudrier, M.J. Desmons
    CEA-DRF-IRFU, France
  • B. Jones, D. Noll, A.G. Sosa, E. Trachanas, R. Zeng
    ESS, Lund, Sweden
 
  The 352.21 MHz Radio Frequency Quadrupole (RFQ) for the European Spallation Source ERIC (ESS) has been delivered by the end of 2019 by CEA/IRFU. The RFQ is designed to accelerate a 70 mA proton beam from 75 keV up to 3.62 MeV. It consists of a 4-vane resonant cavity with a total length of 4.6 m. Two coaxial power loop couplers feed the RFQ with the 1.4 MW of RF power required for beam operation. This paper first presents the main systems required for the RFQ conditioning. Then it summarizes the main steps and results of this high power RF conditioning completed at ESS from June 9 to July 29, 2021 in order to achieve the nominal field for a pulse length of 3.2ms at the repetition rate of 14Hz.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK003  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS038 RFQ NEWGAIN: RF and Thermomechanical Design 1510
 
  • P. Hamel, N. Sellami
    CEA-IRFU, Gif-sur-Yvette, France
  • M.J. Desmons, O. Piquet, B. Prevet
    CEA-DRF-IRFU, France
 
  Funding: Agence Nationale de la Recherche (ANR)
A new injector called NEWGAIN will be added to the SPIRAL2 Linear Accelerator (LINAC), in parallel with the existing one. It will be mainly composed of an ion source and a Radio Frequency Quadrupole (RFQ) connected to the superconductive LINAC of SPIRAL2. The new RFQ will accelerate at 88.05 MHz particles with charge-over-mass ratio (Q/A) between 1/3 and 1/7, from 10 keV/u up to 590 keV/u. It consists of a 4-vane resonant cavity with a total length of 7 m. It is a CW machine that has to show stable operation, provide the request availability, have the minimum losses in order to provide the highest current to the superconductive LINAC and show the best quality/cost ratio. This paper will present the preliminary RF design and the thermomechanical study for this RFQ.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS038  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)