Author: Bruker, M.W.
Paper Title Page
MOPOTK052 CEBAF Injector Model for KL Beam Conditions 580
 
  • S. Pokharel, G.A. Krafft
    ODU, Norfolk, Virginia, USA
  • M.W. Bruker, J.M. Grames, A.S. Hofler, R. Kazimi, G.A. Krafft, S. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
The Jefferson Lab KL experiment will run at the Continuous Electron Beam Accelerator Facility with a much lower bunch repetition rate (7.80 or 15.59 MHz) than nominally used (249.5 or 499 MHz). While the proposed average current of 2.5 - 5.0 muA is relatively low compared to the maximum CEBAF current of approximately 180 muA, the corresponding bunch charge is atypically high for CEBAF injector operation. In this work, we investigated the evolution and transmission of low-rep-rate, high-bunch-charge (0.32 to 0.64 pC) beams through the CEBAF injector. Using the commercial software General Particle Tracer, we have simulated and analyzed the beam characteristics for both values of bunch charge. We performed these simulations with the existing injector using a 130 kV gun voltage. We have calculated and measured the transmission as a function of the photocathode laser spot size and pulse length. We report on the findings of these simulations and optimum parameters for operating the experiment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK052  
About • Received ※ 07 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 26 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)