Author: Bibian, A.
Paper Title Page
WEOZSP1 Longitudinal Bunch Shaping Using an X-Band Transverse Deflecting Cavity Powered by Wakefield Power Extractor at Argonne Wakefield Accelerator Facility 1655
 
  • S.Y. Kim, G. Chen, D.S. Doran, W. Liu, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • A. Bibian, C.-J. Jing, E.W. Knight, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This project is supported under DoE SBIR Phase I Grant No. DE-SC0021733. This work is also supported by Department of Energy, Office of Science, under contract No. DEAC02-06CH11357.
Longitudinal bunch shaping using transverse deflecting cavities (TDC) was recently proposed*. This configuration is well suited for shaping the current profile of high-charge bunches since it does not use dipole magnets, and therefore, is not prone to deleterious effects arising from coherent synchrotron radiation. An intercepting mask located downstream of the first TDC, which introduce a spatiotemporal correlation, transversely shape the beam. Downstream of the second TDC, upon removal of the cross-plane correlation, the bunch is temporally shaped. In this paper, we investigate longitudinal bunch shaping with an X-band TDC powered by an X-band, short-pulse wakefield Power Extraction and Transfer Structure (PETS), where the wakefield from the drive beam propagating through the PETS is the power source. We describe the RF designs of the X-band TDC and the configuration of the overall shaping system. Finally, we explore via beam-dynamics simulations the performances of the proposed shaper and its possible application to various bunch shapes relevant to beam-driven acceleration and coherent radiation generation.
*Gwanghui Ha et al., Phys. Rev. Accel. Beams 23, 072803, 2020
 
slides icon Slides WEOZSP1 [6.235 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOZSP1  
About • Received ※ 14 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)