Author: Banerjee, N.
Paper Title Page
THOXGD2 Electron Cooling Experiment for Proton Beams with Intense Space-Charge in IOTA 2395
 
  • N. Banerjee, J.A. Brandt
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
  • M.K. Bossard, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
  • B.L. Cathey, S. Nagaitsev, G. Stancari
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermi Research Alliance, LLC under Contract No.~DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics and also the University of Chicago.
Electron cooling as a method of creating intense ion beams has a practical upper limit when it comes to the peak phase space density of ion beams which can be achieved in practice. We describe a new experiment to study electron cooling of 2.5 MeV protons at the intensity limit using the Integrable Optics Test Accelerator (IOTA), which is a storage ring dedicated to beam physics research at Fermilab. This system will enable the study of magnetized electron cooling of a proton beam with transverse incoherent tune shifts approaching -0.5 due to the presence of intense space-charge forces. We present an overview of the hardware design, simulations and specific experiments planned for this project.
 
slides icon Slides THOXGD2 [2.775 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THOXGD2  
About • Received ※ 13 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)