Author: Abramov, A.
Paper Title Page
TUPOTK062 Settings for Improved Betatron Collimation in the First Run of the High Luminosity LHC 1366
 
  • B. Lindström, A. Abramov, R. Bruce, R. De Maria, P.D. Hermes, J. Molson, S. Redaelli, F.F. Van der Veken
    CERN, Meyrin, Switzerland
 
  Funding: This work was supported by the High Luminosity LHC project
The current betatron collimation system in the LHC is not optimized to absorb off-momentum particles scattered out from the primary collimators. The highest losses are concentrated in the downstream dispersion suppressor (DS). Given the increased beam intensity in the High Luminosity LHC (HL-LHC), there is concern that these losses could risk quenching the superconducting DS magnets. Consequently, a dedicated upgrade of the DS has been studied. However, at this stage, the deployment for the startup of the HL-LHC is uncertain due to delays in the availability of high-field magnets needed to integrate new collimators into the DS. In this paper, we describe the expected collimation setup for the first run of the HL-LHC and explore various techniques to improve the collimation cleaning. These include exploiting the asymmetric response of the two jaws of each primary collimator and adjusting the locally generated dispersion in the collimation insertion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK062  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST016 Development of Collimation Simulations for the FCC-ee 1718
 
  • A. Abramov, R. Bruce, M. Hofer, G. Iadarola, S. Redaelli
    CERN, Meyrin, Switzerland
  • F.S. Carlier, T. Pieloni, M. Rakic
    EPFL, Lausanne, Switzerland
  • L.J. Nevay
    JAI, Egham, Surrey, United Kingdom
  • S.M. White
    ESRF, Grenoble, France
 
  A collimation system is under study for the FCC-ee to protect the machine from the multi-MJ electron and positron beams and limit the backgrounds to the detectors. One of the key aspects of the collimation system design is the setup of simulation studies combining particle tracking and scattering in the collimators. The tracking must include effects important for electron beam single-particle dynamics in the FCC-ee, such as synchrotron radiation. For collimation, an aperture model and particle-matter interactions for electrons are required. There are currently no established simulation frameworks that include all the required features. The latest developments of an integrated framework for multi-turn collimation studies in the FCC-ee are presented. The framework is based on an interface between tracking codes, pyAT and Xtrack, and a particle-matter interaction code, BDSIM, based on Geant4. Promising alternative simulation codes and frameworks are also discussed. The challenges are outlined, and the first results are presented, including preliminary loss maps for the FCC-ee.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST016  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST017 Design of a Collimation Section for the FCC-ee 1722
 
  • M. Hofer, A. Abramov, R. Bruce, K. Oide, F. Zimmermann
    CERN, Meyrin, Switzerland
  • M. Moudgalya, T. Pieloni
    EPFL, Lausanne, Switzerland
  • K. Oide
    KEK, Ibaraki, Japan
 
  The design parameters of the FCC-ee foresee operation with a total stored beam energy of about 20 MJ, exceeding those of previous lepton colliders by almost two orders of magnitude. Given the inherent damage potential, a halo collimation system is studied to protect the machine hardware, in particular superconducting equipment such as the final focus quadrupoles, from sudden beam loss. The different constraints that led to dedicating one straight section to collimation will be outlined. In addition, a preliminary layout and optics for a collimation insertion are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST017  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)