Author: Abo-Bakr, M.
Paper Title Page
MOPOTK009 Basic Design Choices for the BESSY III MBA Lattice 449
 
  • B.C. Kuske, M. Abo-Bakr, P. Goslawski
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
Lattice development efforts for the 2.5GeV, low emittance successor of BESSY II, are ongoing at HZB for 2 years. The basic choice of a multi-bend achromat lattice is indispensable due to the emittance goal of 100pm, required to generate diffraction limited radiation up to 1keV. Hard boundary conditions for the design are a reasonably short circumference of ~350m due to the accessible construction properties in vicinity to Bessy II and 16 super-periods to not step behind the number of existing experimental stations. Additionally, the Pysikalisch Technische Bundesanstalt, the long-term partner of HZB, requests homogeneous dipoles as a calculable and traceable source of radiation for metrology applications. The configuration of the two building blocks of MBA lattices - unit cell and dispersion suppression cell - has been thoroughly studied from basic principles. It was found that gradient free bending dipoles are the better choice for the BESSY III lattice, opposite to the concepts of comparable projects. This work summarizes and explains the findings of our investigations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK009  
About • Received ※ 21 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS010 BESSY III Status Report and Lattice Design Process 1417
 
  • P. Goslawski, M. Abo-Bakr, M. Arlandoo, J. Bengtsson, K. Holldack, A. Jankowiak, B.C. Kuske, A. Meseck, M.K. Sauerborn, M. Titze, J. Viefhaus, J. Völker
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
Since 2020 a detailed discussion about a BESSY~II successor is ongoing at HZB and its user community in order to define the science and layout of the new facility. Still free locations close to BESSY~II have triggered a discussion about a greenfield project, but in-house upgrade solutions have also been investigated. As an additional boundary condition, BESSY~III has to meet the requirement of the Physikalische Technische Bundesanstalt (PTB) for radiation sources for metrology applications and bending magnet sources for tender X-rays. A Conceptional Design Report is in preparation. Here, we give a status report including a first parameter space, technical specifications and a first candidate for the linear lattice.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS010  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)