JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for WEPOST021: Theoretical Study of Laser Energy Absorption Towards Energetic Proton and Electron Sources

@inproceedings{vladisavlevici:ipac2022-wepost021,
  author       = {I.M. Vladisavlevici and D. Vizman and E. d’Humières},
  title        = {{Theoretical Study of Laser Energy Absorption Towards Energetic Proton and Electron Sources}},
  booktitle    = {Proc. IPAC'22},
% booktitle    = {Proc. 13th International Particle Accelerator Conference (IPAC'22)},
  pages        = {1737--1740},
  eid          = {WEPOST021},
  language     = {english},
  keywords     = {laser, target, electron, proton, simulation},
  venue        = {Bangkok, Thailand},
  series       = {International Particle Accelerator Conference},
  number       = {13},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2673-5490},
  isbn         = {978-3-95450-227-1},
  doi          = {10.18429/JACoW-IPAC2022-WEPOST021},
  url          = {https://jacow.org/ipac2022/papers/wepost021.pdf},
  abstract     = {{Our main goal is to describe and model the energy transfer from laser to particles, from the transparent to less transparent regime of laser-plasma interaction in the ultra-high intensity regime, and using the results obtained to optimize laser ion acceleration. We investigate the case of an ultra high intensity (10²² W/cm²) ultra short (20 fs) laser pulse interacting with a near-critical density plasma made of electrons and protons of density 5 n_{c} (where n_{c} = 1.1·10²¹ cm⁻³ is the critical density for a laser wavelength of 1 µm). Through 2D particle-in-cell (PIC) simulations, we study the optimal target thickness for the maximum conversion efficiency of the laser energy to particles. Theoretical modelling of the predominant laser-plasma interaction mechanisms predicts the particle energy and conversion efficiency optimization. Our studies led to an optimization of the target thickness for maximizing electron and proton acceleration.}},
}