JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for TUPOST053: Beam Tuning at the FRIB Front End Using Machine Learning

TY  - CONF
AU  - Hwang, K.
AU  - Fukushima, K.
AU  - Maruta, T.
AU  - Nash, S.
AU  - Ostroumov, P.N.
AU  - Plastun, A.S.
AU  - Zhang, T.
AU  - Zhao, Q.
ED  - Zimmermann, Frank
ED  - Tanaka, Hitoshi
ED  - Sudmuang, Porntip
ED  - Klysubun, Prapong
ED  - Sunwong, Prapaiwan
ED  - Chanwattana, Thakonwat
ED  - Petit-Jean-Genaz, Christine
ED  - Schaa, Volker R.W.
TI  - Beam Tuning at the FRIB Front End Using Machine Learning
J2  - Proc. of IPAC2022, Bangkok, Thailand, 12-17 June 2022
CY  - Bangkok, Thailand
T2  - International Particle Accelerator Conference
T3  - 13
LA  - english
AB  - The Facility for Rare Isotope Beams (FRIB) at Michigan State University produced and identified the first rare isotopes demonstrating the key performance parameter and completion of the project. An important next step toward FRIB user operation includes fast tuning of the Front End (FE) decision parameters to maintain optimal beam optics. The FE consists of the ion source, charge selection system, LEBT, RFQ, and MEBT. The strong coupling of many ion source parameters, strong space-charge effects in multi-component ion beams, and a not well-known neutralization factor in the beamline from the ion source to the charge selection system make the FE modeling difficult. In this paper, we present our first effort toward the Machine Learning (ML) application for automatic control of the beam exiting the FE.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 983
EP  - 986
KW  - simulation
KW  - operation
KW  - rfq
KW  - controls
KW  - status
DA  - 2022/07
PY  - 2022
SN  - 2673-5490
SN  - 978-3-95450-227-1
DO  - doi:10.18429/JACoW-IPAC2022-TUPOST053
UR  - https://jacow.org/ipac2022/papers/tupost053.pdf
ER  -