JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for TUPOPT058: A Machine Learning Approach to Electron Orbit Control at the 1.5 GeV Synchrotron Light Source DELTA

TY  - CONF
AU  - Schirmer, D.
ED  - Zimmermann, Frank
ED  - Tanaka, Hitoshi
ED  - Sudmuang, Porntip
ED  - Klysubun, Prapong
ED  - Sunwong, Prapaiwan
ED  - Chanwattana, Thakonwat
ED  - Petit-Jean-Genaz, Christine
ED  - Schaa, Volker R.W.
TI  - A Machine Learning Approach to Electron Orbit Control at the 1.5 GeV Synchrotron Light Source DELTA
J2  - Proc. of IPAC2022, Bangkok, Thailand, 12-17 June 2022
CY  - Bangkok, Thailand
T2  - International Particle Accelerator Conference
T3  - 13
LA  - english
AB  - Machine learning (ML) methods have found their application in a wide range of particle accelerator control tasks. Among other possible use cases, neural networks (NNs) can also be utilized for automated beam position control (orbit correction). ML studies on this topic, which were initially based on simulations, were successfully transferred to real accelerator operation at the 1.5-GeV electron storage ring of the DELTA accelerator facility. For this purpose, classical fully connected multi-layer feed-forward NNs were trained by supervised learning on measured orbit data to apply local and global beam position corrections. The supervised NN training was carried out with various conjugate gradient backpropagation learning algorithms. Afterwards, the ML-based orbit correction performance was compared with a conventional, numerical-based computing method. Here, the ML-based approach showed a competitive orbit correction quality in a fewer number of correction steps.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 1137
EP  - 1140
KW  - storage-ring
KW  - network
KW  - synchrotron
KW  - controls
KW  - electron
DA  - 2022/07
PY  - 2022
SN  - 2673-5490
SN  - 978-3-95450-227-1
DO  - doi:10.18429/JACoW-IPAC2022-TUPOPT058
UR  - https://jacow.org/ipac2022/papers/tupopt058.pdf
ER  -