JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for TUPOPT052: Proposal for Non-Destructive Electron Beam Diagnostic with Laser-Compton Backscattering at the S-Dalinac

@inproceedings{meier:ipac2022-tupopt052,
  author       = {M.G. Meier and M. Arnold and J. Enders and N. Pietralla},
  title        = {{Proposal for Non-Destructive Electron Beam Diagnostic with Laser-Compton Backscattering at the S-Dalinac}},
  booktitle    = {Proc. IPAC'22},
% booktitle    = {Proc. 13th International Particle Accelerator Conference (IPAC'22)},
  pages        = {1121--1124},
  eid          = {TUPOPT052},
  language     = {english},
  keywords     = {photon, electron, laser, scattering, linac},
  venue        = {Bangkok, Thailand},
  series       = {International Particle Accelerator Conference},
  number       = {13},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2673-5490},
  isbn         = {978-3-95450-227-1},
  doi          = {10.18429/JACoW-IPAC2022-TUPOPT052},
  url          = {https://jacow.org/ipac2022/papers/tupopt052.pdf},
  abstract     = {{To recover a large fraction of energy from the accelerator process in an energy-recovery linac, experiments, secondary-beam production, and beam diagnostics must be non-destructive and/or, hence, feature a low interaction probability with the very intense electron-beam. Laser-Compton backscattering can provide a quasi-monochromatic highly polarized X-ray to γ-ray beam without strongly affecting the electron beam due to the small recoil and the small Compton cross-section. Highest energies of the scattered photons are obtained for photon-scattering angles of \ang{180}, i. e., backscattering. A project at TU Darmstadt foresees to synchronize a highly repetitive high-power laser with the Superconducting DArmstadt electron LINear ACcelerator S\hbox{-}DALINAC, capable of running in energy recovery mode * to realize a laser-Compton backscattering source with photon beam energy up to §I{180}{\kilo\electronvolt}. The source will be first used as a diagnostic tool for determining and monitoring key electron-parameters, in particular energy and the energy spread at the S\hbox{-}DALINAC operation. Results are foreseen to be used for optimizing the design of laser-Compton backscattering sources at energy-recovery linacs.}},
}