JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
TY - CONF AU - Sukara, S. AU - Kongmali, K. AU - Ohgaki, H. AU - Rimjaem, S. ED - Zimmermann, Frank ED - Tanaka, Hitoshi ED - Sudmuang, Porntip ED - Klysubun, Prapong ED - Sunwong, Prapaiwan ED - Chanwattana, Thakonwat ED - Petit-Jean-Genaz, Christine ED - Schaa, Volker R.W. TI - Design and Simulation of the MIR-FEL Generation System at Chiang Mai University J2 - Proc. of IPAC2022, Bangkok, Thailand, 12-17 June 2022 CY - Bangkok, Thailand T2 - International Particle Accelerator Conference T3 - 13 LA - english AB - At the PBP-CMU Electron Linac Laboratory, the system to generate MIR-FEL using the electron linac has been developed. In this contribution, the design and simulation results of the MIR-FEL generation system are presented. The system is designed as the oscillator-FEL type consisting of two mirrors and a 1.6-m permanent planar undulator. The middle of the undulator is determined as the laser beam waist position. Both two mirrors are the concave gold-coated copper mirrors placing upstream and downstream the optical cavity, which has a total length of 5.41 m. The FEL is designed to coupling out at a hole with diameter of 2 mm on the upstream mirror. The optical cavity is optimized to obtain high FEL gain and high FEL power using GENESIS 1.3 simulation code. The electron beam with energy of 25 MeV is used in the consideration. As a result, the MIR-FEL with central wavelength of 13.01 ’m is obtained. The optimum upstream and downstream mirror curvatures are 3.091 m and 2.612 m, respectively, which give the Rayleigh length of 0.631 m. This optical cavity yields the power coupling ratio of 1:1000 and the FEL gain of up to 40%. The extracted MIR-FEL peak power in 100 kW scale is obtained at the coupling hole. The construction of the practical MIR-FEL system is conducted based on the results from this study. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1074 EP - 1076 KW - FEL KW - electron KW - cavity KW - undulator KW - simulation DA - 2022/07 PY - 2022 SN - 2673-5490 SN - 978-3-95450-227-1 DO - doi:10.18429/JACoW-IPAC2022-TUPOPT030 UR - https://jacow.org/ipac2022/papers/tupopt030.pdf ER -