JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
TY - CONF AU - Sun, H. AU - Feng, C. AU - Liu, B. AU - Zhu, Z.H. ED - Zimmermann, Frank ED - Tanaka, Hitoshi ED - Sudmuang, Porntip ED - Klysubun, Prapong ED - Sunwong, Prapaiwan ED - Chanwattana, Thakonwat ED - Petit-Jean-Genaz, Christine ED - Schaa, Volker R.W. TI - Start To End Simulation Study For Oscillator-Amplifier Free-Electron Laser J2 - Proc. of IPAC2022, Bangkok, Thailand, 12-17 June 2022 CY - Bangkok, Thailand T2 - International Particle Accelerator Conference T3 - 13 LA - english AB - External seeding techniques like high-gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) have been proposed and proven to be able to generate fully coherent radiation in the EUV and X-ray range. A big challenge is to combine the advantages of seeding schemes with high repetition rates. Recently, for seeding at a high repetition rate, an optical resonator scheme has been introduced to recirculate the radiation in the modulator to seed the high repetition rate electron bunches. Earlier studies have shown that a resonator-like modulator combined with an amplifier in high gain harmonic generation (HGHG) configuration can be used to generate radiation whose wavelength can reach the water window region. This scheme overcomes the limitation of requiring high repetition rate seed laser systems. In this contribution, we present start-to-end simulation results of a seeded oscillator-amplifier FEL scheme. PB - JACoW Publishing CP - Geneva, Switzerland SP - 1022 EP - 1024 KW - electron KW - radiation KW - simulation KW - FEL KW - cavity DA - 2022/07 PY - 2022 SN - 2673-5490 SN - 978-3-95450-227-1 DO - doi:10.18429/JACoW-IPAC2022-TUPOPT011 UR - https://jacow.org/ipac2022/papers/tupopt011.pdf ER -