JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for THPOMS024: A Novel Intensity Compensation Method to Achieve Energy Independent Beam Intensity at the Patient Location for Cyclotron Based Proton Therapy Facilities

TY  - CONF
AU  - Maradia, V.
AU  - Lomax, A.L.
AU  - Meer, D.
AU  - Psoroulas, S.
AU  - Weber, D.C.
ED  - Zimmermann, Frank
ED  - Tanaka, Hitoshi
ED  - Sudmuang, Porntip
ED  - Klysubun, Prapong
ED  - Sunwong, Prapaiwan
ED  - Chanwattana, Thakonwat
ED  - Petit-Jean-Genaz, Christine
ED  - Schaa, Volker R.W.
TI  - A Novel Intensity Compensation Method to Achieve Energy Independent Beam Intensity at the Patient Location for Cyclotron Based Proton Therapy Facilities
J2  - Proc. of IPAC2022, Bangkok, Thailand, 12-17 June 2022
CY  - Bangkok, Thailand
T2  - International Particle Accelerator Conference
T3  - 13
LA  - english
AB  - In cyclotron-based proton therapy facilities, an energy selection system is typically used to lower beam energy from the fixed value provided by the accelerator (250/230MeV) to the one needed for the treatment (230-70MeV). Such a system has drawback of introducing an energy-dependent beam current at the patient location, resulting in energy-dependent beam intensity ratios of about 10³ between high and low energies. This complicates treatment delivery and challenges patient safety systems. As such, we propose the use of a dual-energy degrader method that can reduce beam intensity for high-energy beams. The first degrader is made of high Z material and the second is made of low Z material and are placed next to each other. For high energies (230-180MeV), we use only first degrader to increase beam emittance after degrader and thus lose intensity in emittance selection collimators. For intermediate energy beams (180-100MeV) we use the combination of both degraders, whereas for low energy beams (100-70MeV), only the second degrader limits the increase in emittance. With this approach, energy-independent beam intensities can be achieved, whilst localizing beam losses around the degrader.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 3004
EP  - 3006
KW  - cyclotron
KW  - proton
KW  - optics
KW  - emittance
KW  - beam-losses
DA  - 2022/07
PY  - 2022
SN  - 2673-5490
SN  - 978-3-95450-227-1
DO  - doi:10.18429/JACoW-IPAC2022-THPOMS024
UR  - https://jacow.org/ipac2022/papers/thpoms024.pdf
ER  -