JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
TY - CONF AU - Harrig, K.P. AU - Elementi, L. AU - Jensen, C.C. AU - Pfeffer, H. AU - Prebys, E. AU - Still, D.A. AU - Terechkine, I. AU - Werkema, S.J. AU - Wong, M. ED - Zimmermann, Frank ED - Tanaka, Hitoshi ED - Sudmuang, Porntip ED - Klysubun, Prapong ED - Sunwong, Prapaiwan ED - Chanwattana, Thakonwat ED - Petit-Jean-Genaz, Christine ED - Schaa, Volker R.W. TI - Ferrite Specification for the Mu2e 300 kHz and 4.4 MHz AC Dipole Magnets J2 - Proc. of IPAC2022, Bangkok, Thailand, 12-17 June 2022 CY - Bangkok, Thailand T2 - International Particle Accelerator Conference T3 - 13 LA - english AB - The Mu2e experiment at Fermilab will measure the rate for neutrinoless-conversion of negative muons into electrons with never-before-seen precision. This experiment will use a pulsed 8 GeV proton beam with pulses separated by 1.7 µs. To suppress beam induced backgrounds to this process, a set of dipoles operating at 300 kHz and 4.4 MHz have been developed that will reduce the fraction of out-of-time protons at the level of 1E-10 or less. Selection of magnetic ferrite material for construction must be carefully considered given the high repetition rate and duty cycle that can lead to excess heating in conventional magnetic material. A model of the electromagnetic and thermal properties of candidate ferrite materials has been constructed. Magnetic permeability, inductance, and power loss were measured at the two operating frequencies in toroidal ferrite samples as well as in the ferrites from which prototype magnets were built. Additionally, the outgassing rates of the ferrite material was measured to determine vacuum compatibility. The outcome of this work is a detailed specification of the electrical and mechanical details of the ferrite material required for this application. PB - JACoW Publishing CP - Geneva, Switzerland SP - 2816 EP - 2818 DA - 2022/07 PY - 2022 SN - 2673-5490 SN - 978-3-95450-227-1 DO - doi:10.18429/JACoW-IPAC2022-THPOTK023 UR - https://jacow.org/ipac2022/papers/thpotk023.pdf ER -