JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for MOPOST030: Proton Irradiation Site for Si-Detectors at the Bonn Isochronous Cyclotron

@inproceedings{sauerland:ipac2022-mopost030,
  author       = {D. Sauerland and R. Beck and J. Dingfelder and P.D. Eversheim and P. Wolf},
  title        = {{Proton Irradiation Site for Si-Detectors at the Bonn Isochronous Cyclotron}},
  booktitle    = {Proc. IPAC'22},
% booktitle    = {Proc. 13th International Particle Accelerator Conference (IPAC'22)},
  pages        = {130--132},
  eid          = {MOPOST030},
  language     = {english},
  keywords     = {radiation, cyclotron, proton, site, HOM},
  venue        = {Bangkok, Thailand},
  series       = {International Particle Accelerator Conference},
  number       = {13},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2673-5490},
  isbn         = {978-3-95450-227-1},
  doi          = {10.18429/JACoW-IPAC2022-MOPOST030},
  url          = {https://jacow.org/ipac2022/papers/mopost030.pdf},
  abstract     = {{The Bonn Isochronous Cyclotron provides proton, deuteron, alpha particle and other light ion beams with a charge-to-mass ratio Q/A of ’ 1/2 and kinetic energies ranging from 7 to 14 MeV per nucleon. At a novel irradiation site, a 14 MeV proton beam with a diameter of a few mm is utilized to homogeneously irradiate silicon detectors, so-called devices under test (DUTs), to perform radiation hardness studies. Homogeneous irradiation is achieved by moving the DUT through the beam in a row-wise scan pattern with constant velocity and a row separation smaller than the beam diameter. During the irradiation procedure, the beam parameters are continuously measured non-destructively using a calibrated, secondary electron emission-based beam monitor, installed at the exit window of the beamline. The diagnostics and the irradiation procedure ensure a homogeneous irradiation with a proton fluence error of smaller than 2 %. In this work, an overview of the accelerator facility is given and the irradiation site with its beam diagnostics is presented in detail.}},
}