JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for MOPOST014: The 325 MHz FAIR pLinac Ladder RFQ - Final Assembly for Commissioning

@inproceedings{schuett:ipac2022-mopost014,
  author       = {M. Schuett and C.M. Kleffner and K. Knie and U. Ratzinger},
  title        = {{The 325 MHz FAIR pLinac Ladder RFQ - Final Assembly for Commissioning}},
  booktitle    = {Proc. IPAC'22},
% booktitle    = {Proc. 13th International Particle Accelerator Conference (IPAC'22)},
  pages        = {82--85},
  eid          = {MOPOST014},
  language     = {english},
  keywords     = {rfq, linac, proton, coupling, vacuum},
  venue        = {Bangkok, Thailand},
  series       = {International Particle Accelerator Conference},
  number       = {13},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2673-5490},
  isbn         = {978-3-95450-227-1},
  doi          = {10.18429/JACoW-IPAC2022-MOPOST014},
  url          = {https://jacow.org/ipac2022/papers/mopost014.pdf},
  abstract     = {{Based on the positive results of the unmodulated 325 MHz Ladder-RFQ prototype from 2013 to 2016, we developed and designed a modulated 3.4 m Ladder-RFQ*. The Ladder-RFQ features a very constant voltage along the axis as well as low dipole modes. The unmodulated prototype accepted 3 times the operating power of which is needed in operation** corresponding to a Kilpatrick factor of 3.1 with a pulse length of 200 µs. The 325 MHz RFQ is designed to accelerate protons from 95 keV to 3.0 MeV according to the design parameters of the proton linac within the FAIR project***. This particular high frequency for a 4-ROD-RFQ creates difficulties, which triggered the development of a Ladder-RFQ with its high symmetry. The results of the unmodulated prototype have shown, that the Ladder-RFQ is very well suited for that frequency. For the applied cooling concept, the Ladder-RFQ can be driven up to a duty factor of 10%. Manufacturing has been completed in September 2018. The final flatness & frequency tuning as well as the final assembly have been completed. We present the final RF measurements and assembly steps getting the Ladder-RFQ ready for shipment and high power RF test prior to assembly.}},
}